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Bunching transition in a time-headway model of a bus route
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A time-headway model is presented to mimic bus behavior on the bus route. The motion of a bus is
described in terms of the time headway between its bus and the bus in front. We study the bunching behavior
of buses induced by interacting with other buses and passengers. It is shown that the dynamical phase transi-
tions among the inhomogeneous bunching phase, the homogeneous free phase, the coexisting phase, and the
homogeneous congested phase occur with varying the initial time headway. We study the effect of not stopping
at bus stops on the time-headway profile. It is found that the bunching transition lines are consistent with the
neutral stability curves obtained by the linear stability analysis.
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I. INTRODUCTION to take into account the local dynamics of cars. The linear
stability analysis can be applied to the basic equation and the
Recently, traffic problem§l—4] have attracted much at- jamming transition curve can be calculated by the neutral
tention in the field of nonequilibrium statistical mechanics.stability line. On the other hand, the bus route system has
Traffic flow is a kind of many-body system of strongly in- been studied only by the cellular automaton md@8l. The
teracting cars. The traffic flow has been studied by variou®ther models are unknown in literature.
models: the cellular automaton models, the car following In this paper we present the time-headway model to
models, the gas kinetic models, and the hydrodynamic modhimic the behavior of buses on the route. We study the
els[5—13. Recent studies reveal physical phenomena sucime-headway behavior of buses by the use of both simula-
as the nonequilibrium phase transitions and the nonlinedion and linear stability analysis. We show that the bunching
waves[14—26. It has been shown that the jamming transi- transition occurs in the time-headway model. We investigate
tions are very similar to the conventional phase transitionghe effect of not stopping at the bus stop on the time-

and critical phenomeng27,29. headway profile and the bunching transition.
Very recently, the bus route model has been proposed to
investigate the bus behavior on a bus route with the use of Il. MODELS

the_ cellular automatofi29]. The bus. route mode is also a We modify the car-following model of traffic to describe
typical many-body system. If a bus is delayed by some fluc-

tuation, the time headwaigap between it and its predeces- the bus motion in terms of the time headway. First, we con-

sor be(*:omes larger than the initial time headwa Fl;ecause th|Sider the basic model with stopping at the bus stop. Each bus
1arg y Dec s%ops at all the bus stops. It is assumed that the bus behind

bus has to pick up more passengers than the initial value

. . . .. tannot pass over the bus ahead. We now define the basic
During the period of delay, more passengers will be Waltlr]gmodel for the bus route. The model is defined on a one-

Lcl)crjvtvflle r?qlés\‘/'irfs dZ[:Sgg’ggs Vt\),ﬁls s\;\g\lllv%%vsﬁriﬂirbduﬂgzebdéhT:gdimensional(lD) lattice with periodic boundary conditions.
y 9 y Each lattice site is labeled with a numberrunning from 1

it. It has been found that the bunching transition between al M. A site represents a bus stop. Buses move on the 1D
inhomogeneous jammed phasehere the buses bunch t0- o Foch hus is labeled with a numipeanning from 1 to
gethey af?d a homogene_ous phase oceurs with varying th‘l:\l. The distance between bus stops-1 andm is set by
bus density. The dynamical phase transition and scaling bq_—m_l_ The model is illustrated schematically in Fig. 1. The

havior of the time headway have been studied. mean velocity of bus between bus stopsi—1 andm is
The bus route dynamics is closely related to the trafflcdefined byv,(m—1). The arrival timet,(m) of busj at bus

flow dynamics in one dimension. However, the studies of theSto mis aiven b
bus route problem are very scar@9]. To know the prop- pPmMIS giv y

erties of the buses on the route is important in our life. The

bus route problem is also interesting from the point of view t;(m)=t;(m—1)+ Lm—lll D
of nonequilibrium phase transitions. It is sometimes ob- vj(m=1)
served that when a bus is highly delayed, the bus passes the Loy
bus stop without stopping. Furthermore, the nonstopping bus m-2 m'_%ﬁ'n m+1 m+2
increases its speed to reduce the delay. It is little known how  —0 O O O O-
the nonstopping and speed up of the delayed bus effects the
bus behavior. The reduction of the delay is very important to NN £ - KC% -
the public. O e © 0 »
The traffic flow systems have been studied using various 1 ! !
models. The car-following models have some advantages for
modeling and analysis. In the car-following model, it is easy FIG. 1. Schematic illustration of the bus route model.
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We define the time headway of bpst bus stopm as fol-
lows:
40+
wheret;  ;(m) is the arrival time of bug+ 1 in front of bus
j at bus stopn. From Egs(1) and(2), one obtains the equa- s0r ]
tion of motion for bug in terms of time headway B
At(m):At(m_1)+L 1 _ 1 20 [ S T Y N I
! J ™ o(m=1) v (m-1)f 00 50 ., 100 15.0 200

()
) ) ) FIG. 2. Plot of the operation velocity(At) against time head-
Generally, a bus driver operates his bus in such a manner th@ty At for A=0.2, v,,;,=2.0, v =40, andt,=2.0.

his velocity increases or decreases according as the time

headway is large or small. We assume that the mean velocityus is larger than the critical valug. If the bus passes over

of busj at bus stopm depends only on the time headway of the bus stop without stopping, the passengers waiting at the
busj at bus stopm. The mean velocity is given by the fol- pus stop take the next bus. Then, we adopt the modified

lowing operation velocity function operation velocity function:
vj(m)=V(At;(m)), (4) —Umi
j j V(Atj(m)):l}min‘l- (Umax4vm|n)
where V(At;(m)) is the function of only time headway
At;(m). The operation velocity is similar to the optimal ve- X [tanh(At;(m)—to)+tanh(t;)]
locity function in the car-following model for traffic flow
[27]. X{1+exd —A(At;(m), Aty (M)}, (6)
Let us include the characteristic of the bus route in the ith
operation velocity functiori4). We adopt the following op- wit
eration velocity: A(At(m),At; , 1(m))
(U max™ Umin) =N[At;(m)— At;(m){1+tanhb(At;(m)—t)}/2

V(Atj(m))zvmin+ 4
+ At (m){1+tanhb(Atj (M) —t)}/2]. (7)
X[tani At;(m)—t.) +tanh(t;)]
When At;(m)<ts and b—, the second term of Ed7)
X[1+exp(—NAt;(m)], (5  becomes zero. IfAtj(m)>ts and b—c, the second term
] ) ] o becomes one. The first term represents the number of pas-
where) is the rate of arrival of passengetsyi, is the mini-  sengers at the bus stap with stopping, the second term
mal velocity,vmay is the maximal velocity in the limit Oh - yepresents the number of passengers taking the nexf bus
=0, andt. is the desired time headway. Whar=0, the  _1 \yhen bug passes over the bus stopand the third term

operation velocity functior5) is consistent with the optimal  represents the number of passengers taking the nexj bus
velocity function of the traffic model except for,n#0 and  \yhen pusj+ 1 passes the bus stop

the replacement of the distance headway with the time head- Furthermore, we take into account the speed up of a non-
way. The operation velocity functiofb) has the following stopping bus. The speed up of the nonstopping bus is in-

properties:(1) in the limit of A=0, the velocity increases ¢|yded in the operation velocity function as follows:
monotonically with the time headway and) the velocity

decreases with increasing time headway for smaland (U max— Umin)

large time headway. The propert§) reflects the fact that V(AL (M) =vmint 4

when the bus behind catches up with the delayed bus, it

should slow down in order to avoid a collision. The property X[tanh(At;(m) —tc)+tanh(te)]

(2) reflects the fact that the bus is delayed more and more
with increasing the gap sizg@ime headwayin front of that X{1+exd —A(AtL(m), Atj,,(m)]}

bus because the delayed bus should pick up more passengers. +c[1+tanH{b(At;(m) —t)}]. (8)
Figure 2 shows the plot of E¢5) against time headway for

AN=0.2,0in=2.0,0 max=4.0, andt.=2.0. Thus the bus route The third term of Eq(8) represents the speed up when the
problem is reduced to its simplest form. The essential feadelayed bus passes over the bus stowithout stopping. If
tures are maintained. the time headwayt;(m) of a delayed bus is larger thag,

We take into account no stopping of the delayed bus. If @he bus passes over the bus stopwithout stopping and
bus is very delayed, the bus should pass over the bus stgimultaneously increases speed dyln the following, we
without stopping at the bus stop. It is assumed that a busonsider the three versions of the time-headway madsl:
trend to pass over the bus stop when the time headway of thtae basic model described by Ed8), (4), and(5), (B) the
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FIG. 3. Plot of the average velocity(Atgy) as a function of the (a)
initial time headwayAt, for the basic version A of the time- a
headway model wheree=12.0, t.=2.0, A=0.2, v,;,=2.0, and
Umax=4.0. The labels, b, andc indicate the transition points. 10
i~ a=12.0 t=12000
nonstopping model described by E@8), (4), (6), and(7), At B At =3.0
and (C) the nonstopping and speed up model described by =
Egs.(3), (4), (7), and(8). ST
I1l. SIMULATION AND RESULT =
We carry out a computer simulation for the three versions 0 : : :
of the bus route model. We solve Ed8) and (4) by itera- 0 » 80 I 100
tion under the periodic boundary condition. We assume that (b)
the distance between bus stops is the same for all bus stops:
L»= a. The simulation is carried out for the following initial
condition: 10
' B a=12.0 t= 2000
_ A At, =20
At;(0)=Aty+0.01x{R(1)—0.5}, 9 I 0
whereR(1) is the random number ranging from 0 to 1 and 51
Atg is the initial value of the time headway which is the B
same for all buses. The second term represents a small fluc-
tuation of time headway at an initial stage. We study the

dependence of bus velocity on the initial time headway. We 00 2I5 . 5l0 N;\ﬁ 100
plot in Fig. 3 the average velociy(Aty) at a steady state as J
a function of the initial time headwaxt, where «=12.0,
tc=2.0,A=0.2,v,in=2.0, v nax=4.0, andN =100 (N is the
tOtal number of busgsThe aV(EIrage velocity at bus stopis berj for the three distinct phases in version A where12.0,t,
defined as v(Atg)=(1N)2;_,V(At(m)) where Aty _30 x=0.2, vy=2.0, v mp=4.0, andN=100. (& The typical
=(1IN) ==, At;(m). We find the three discontinuous points profile of an inhomogeneous bunching phase Agp=4.0 andt
labeled bya, b, andc in Fig. 3. The average velocity at a =140. (b) The typical profile of a homogeneous free phase for
steady state increases with the time headwaytip=1.08.  At,=3.0 andt=2000.(c) The typical profile of a coexisting phase

At point ¢, the average velocity increases discontinuously byfor At,=2.0 andt=2000.

a small quantity. There is a small gap at poinin the ve-

locity curve. Then, the average velocity increases to poinfAt.=At,. In Fig. 4 we show the time-headway profilas;
b(Atg=2.19). At pointb, there is a small gap in the velocity plotted against bus numbgfor various values of initial time
curve. Furthermore, the average velocity increases with timaeadwayAt, for «=12.0 where the total number of buses is
headway to point. At point a of Aty=3.71, the velocity N=100 andt is defined ags=m+integeix M. The profile
decreases abruptly w=2.98. In time headway larger than (a) is obtained forAt,=4.0 andt=140. The profile(a) rep-
Aty=3.71, the steady-state velocity remains nearly constaniesents the typical pattern of the bunching phase. The time
(v=2.98). We find that there are four distinct states for theheadways of some buses increases accordingly as the buses
four regions: (@) the bunching phase forAtg>At,  proceed. The buses behind a bus with large time headway
(=3.71), (b) the homogeneous free phase fat,=At, have a small time headway. The profil®) is obtained for
>At,(=2.19), (c) the kink jam phase foAt,=Aty>At,  Aty=3.0 andt=2000. The profilgb) represents the typical
(=1.08), and(d) the homogeneous congested phase fopattern of the homogeneous free phase. All the buses have

{(e)

FIG. 4. The time-headway profilest; plotted against bus num-
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FIG. 5. Time evolution of the time-headway profile for the in-
homogt_aneous bunching phase with the same values of parameters F|G. 7. Time-headway profile plotted against jusbtained at
as in Fig. 4a). t=300 for the same values of parameters as in Fig. 6.

the same time headway as the initial value. The profilégs ~ creases accordingly as the bus proceeds. We compare Fig. 7
obtained forAto=2.0 andt=2000. The profiléc) represents  With Fig. 4@). The nonstopping improves the delay of most
the typical pattern of the kink jam phase. The time headwaylelayed buses. However, some delayed buses become still
oscillates from bus to bus. The profile is similar to the coex-more and more delayed. The bus driver should speed up in
isting phase in the traffic flow. Figure 5 shows the time evo-addition to the nonstopping to further reduce the delay.
lution of time headway for the bunching phase with the same In Fig. 8 we plot the average velocityAt,) against the
values of parameters as Figa#t The fluctuation at an initial  initial headwayAt, where a=12.0,t.=2.0, t;=10.0, and
stage grows accordingly as buses proceed. The delayed budés 100. We compare Fig. 8 with Fig. 3. The bunching tran-
catch up with the bus behind. In time, the time headways ositions occur at the same values as in Fig. 3. In the bunching
some buses increases with time. phase, the bus velocity is larger than that in Fig. 3. The
We study version B of the time-headway model. We usgncrease of bus velocity is due to the nonstopping effect. The
the operation velocity functiof) with (7). The buses pass transition points do not change by introducing the nonstop-
over bus stops when the time headway becomes larger thaning effect. In the homogeneous free phase, the coexisting
ts=10.0. In Fig. 6 we show the space-time plot of timephase, and the homogeneous congested phase, the time-
headway fromt=100 tot=300 for «=12.0,At,=4.0, and headway profiles do not change and are the same as those of
ts=10.0 whereN=100. Figure 7 shows the time-headway Version A.
profile plotted against buisobtained at=300 for the same We study version C of the time-headway model. We use
values of parameters as in Fig. 6. The time headway of modhe operation velocity functioB) with (7). The buses pass
delayed buses becomes less than the critical viakad 0.0 ~ Over bus stops when the time headway becomes larger than
but the time headway of some buses becomes larger than the=10.0 and simultaneously speeds up. In Fig. 9, we show
critical value t;=10.0. In the delayed bus with less time the space—time plot of time headway frdm 50 to t=225
headway tharis=10.0, the time headway decreases accordfor a=12.0, At;=4.0, andt;=10.0 wherec=1.0 andN
ingly as the bus proceeds. However, in the delayed bus witf 100. The values of the parameters are the same as those of
larger time headway thah,=10.0, the time headway in- Version B in Fig. 6. Figure 10 shows the time-headway pro-

35
o a=12.0
:o PR oowm%w%%/””«ﬂ”oﬂom P Reo0oe
30 L T a(Aty =3.71)
S(Aty) < b{At =2.19)
25 |-
(At =1.08)
20 ke L | i
00 25 50 15 100
j Aty
FIG. 6. Space—time plot of time headway froms 100 tot FIG. 8. Plot of average velocity(At,) against the initial head-
=300 for version B wherex=12.0, At,=4.0, andt;=10.0, and  way At for version B wherea=12.0,t.=2.0, t;=10.0, andN

N=100. =100.
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FIG. 9. Space—time plot of time headway froms50 to t FIG. 11. Plot of the average velocit(Aty) against the initial
=225 for version C wherex=12.0, Aty=4.0,t,=10.0,c=1.0, headwayAt, for version C wherea=12.0,t.=2.0, t;=10.0, ¢
andN=100. =1.0, andN=100.

. . . . IV. LINEAR STABILITY ANALYSIS
file plotted against bug obtained att=2500 for the same

values of parameters as in Fig. 9. After 200, the time- We consider the stability of a homogeneous flow of buses.
headway profile does not change and the flow of buses is iihe homogeneous flow is defined by such a state that all
a steady state. The delayed buses move with a constant tinfé/ses move with the same time headwsty and the same
headway,At=9.2 and its time headway is a little less than Operation velocityV(Aty). We apply the linear stability
the critical valuets=10.0. The normal buses behind the de-2analysis to our modeB) with the operation velocity4). Let
layed buses move with a constant time headwsts=2.6. Yi(m) be small deviations from the homogeneous flow:
The time headway of all the buses is less than10.0. We ~ 2tj(mM)=Ato+y;(m). Then, the linear equation is obtained
compare Fig. 10 with Fig.(4). The nonstopping and speed from Egs.(3) and(4)
up improves the delay of all delayed buses. ,

. . : aV'(Atg)
. I_n Fig. 11 we plot the average velocitf Aty) against the yj(m)=y;(m—1)+ W{y”l(m_ 1)-y;(m=1)},
initial headway Aty where «=12.0, t;=2.0, t;=10.0, c 0
=1.0, andN=100. We compare Fig. 11 with Figs. 3 and 8. (10
The bunching transitions occur at the same values as in Fig _ , ! o :
3 and 8. In the bunching phase, the bus velocity is larger tha%v;gg?t;;(l)‘(;‘ aatlr:(d:\/At(A,tO) is the derivative of operation
those in Figs. 3 and 8. The increase of the bus velocity is due 0

to both nonstopping and speed-up effects. The transition dV(x)
points do not change by introducing both nonstopping and V'(Atg) = )
speed-up effects. In the homogeneous free phase, the coex- d x=Atg

isting phase, and the homogeneous congested phase, the

time-headway profiles do not change and are the same as By expandingy;(m)=Y exp(kj+zm), one obtains
those of versions A and B. Thus we find that the buses are

operated correctly by both nonstopping and speed up of the aV'(Atg)

delayed buses. There are no delayed buses with larger time e’=1+ W(e' —-1). (13)
headway tharig=10.0. 0

By solving Eq.(11) with z, one finds that the leading term of

a=12.0, At; =40 t =2500 zis an order ofk. Whenik—0, z— 0. Let us derive the long

10 wave expansion of, which is determined order by order

B around ik~0. By expandingz=z;ik+z,(ik)?+---, the

At, B first-order and second-order termsikbfare obtained,

5 aV'(Atg)

N AT V(A? (12
o L ! | L :aV’(Ato) _ aV'(At)

0 25 _] 50 75 100 Z 2V(At0)2 V(Ato)z . (13)

FIG. 10. Time-headway profile of version C plotted against buslf z, is a negative value, the homogeneous flow becomes
j obtained at= 2500 for the same values of parameters as in Fig. 9unstable for long wavelength modes. Whenis a positive
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FIG. 12. Phase diagram in the spackt{,1/«) for A=0.2,
Umin=2.0, v max=4.0, andt,=2.0. The solid lines divide the space
into four distinct phases(l) the inhomogeneous bunching phase
(IB), (2) the homogeneous free phas#F), (3) the coexisting phase
(COB), and(4) the homogeneous congested ph@$€T). The open
circles indicate the transition points obtained by the simulation.

FIG. 13. Plot of the bunching transition lin€ (Aty) =0 against
\ for t.=2.0. The inhomogeneous bunching phase appears above
the solid line. The open circles indicate the simulation result.

given by V' (Atg) =0. The simulation result is indicated by
open circles. The simulation result agrees with the neutral
g_tability lines obtained from the linear stability analysis. The
operation velocity has the maximal point far<1.61. The
bunching transition does not occur for>1.61 since the op-

value, the homogeneous flow is stable. One finds the unst
bility condition for small disturbances of long wavelengths:

V'(Atg) <0, (14)  eration velocity function increases monotonically far
>1.61. In Fig. 13, we show the plot of the bunching transi-
or tion line V' (Atg) =0 againstn for t.=2.0. The inhomoge-
V(AL)2 neous bunching phase appears above the solid line. The open
(Ato) circles indicate the simulation result. The theoretical curve
a>—, for V(Atg)>0. (15 - ) - - ; )
V' (Atp) obtained by the linear stability analysis is consistent with the

. . L simulation result.
The unstability condition(15) is similar to that of the con-

ventional car-following model for traffi¢27]. The neutral
stability line a=V(Aty)?/V'(Aty) for V(Aty)>0 presents
the jamming transition curve among the homogeneous free We have presented the time-headway model for a bus
phase(HF), the coexisting phaséCOE), and the homoge- route. We have investigated bus behavior and the bunching
neous congested pha@¢CT). The unstability conditioril4)  transition. We have shown that the dynamical phase transi-
is a new one and occurs due to the delay effect of a bus faions occurs with varying the initial time headway. We have
a large gap. The neutral stability conditidti(Atg)=0 pre-  also applied the linear stability analysis to our model. We
sents the transition line between the inhomogeneous bunchave derived the neutral stability curves which give the dy-
ing phase(IB) and the HF. Figure 12 shows the phase dia-namical phase transition lines. We have found that the neu-
gram in the spaceXtg,l/a) for A=0.2, vin=2.0, vnax  tral stability curves agree with the simulation result.

=4.0, and t.=2.0. The solid curve is given by« It will be useful to investigate bus behavior in the route
=V(Atg)?/V'(Aty) for V(Atg)>0. The vertical line is with the use of the time headway model proposed here.
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