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Bunching transition in a time-headway model of a bus route

Takashi Nagatani
Division of Thermal Science, Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 25 September 2000; published 22 February 2001!

A time-headway model is presented to mimic bus behavior on the bus route. The motion of a bus is
described in terms of the time headway between its bus and the bus in front. We study the bunching behavior
of buses induced by interacting with other buses and passengers. It is shown that the dynamical phase transi-
tions among the inhomogeneous bunching phase, the homogeneous free phase, the coexisting phase, and the
homogeneous congested phase occur with varying the initial time headway. We study the effect of not stopping
at bus stops on the time-headway profile. It is found that the bunching transition lines are consistent with the
neutral stability curves obtained by the linear stability analysis.
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I. INTRODUCTION

Recently, traffic problems@1–4# have attracted much at
tention in the field of nonequilibrium statistical mechanic
Traffic flow is a kind of many-body system of strongly in
teracting cars. The traffic flow has been studied by vari
models: the cellular automaton models, the car follow
models, the gas kinetic models, and the hydrodynamic m
els @5–13#. Recent studies reveal physical phenomena s
as the nonequilibrium phase transitions and the nonlin
waves@14–26#. It has been shown that the jamming tran
tions are very similar to the conventional phase transiti
and critical phenomena@27,28#.

Very recently, the bus route model has been propose
investigate the bus behavior on a bus route with the us
the cellular automaton@29#. The bus route mode is also
typical many-body system. If a bus is delayed by some fl
tuation, the time headway~gap! between it and its predeces
sor becomes larger than the initial time headway because
bus has to pick up more passengers than the initial va
During the period of delay, more passengers will be wait
for the bus. As a result, the bus will get further delayed. T
slowly moving delayed bus will slow down the buses beh
it. It has been found that the bunching transition between
inhomogeneous jammed phase~where the buses bunch to
gether! and a homogeneous phase occurs with varying
bus density. The dynamical phase transition and scaling
havior of the time headway have been studied.

The bus route dynamics is closely related to the tra
flow dynamics in one dimension. However, the studies of
bus route problem are very scarce@29#. To know the prop-
erties of the buses on the route is important in our life. T
bus route problem is also interesting from the point of vi
of nonequilibrium phase transitions. It is sometimes o
served that when a bus is highly delayed, the bus passe
bus stop without stopping. Furthermore, the nonstopping
increases its speed to reduce the delay. It is little known h
the nonstopping and speed up of the delayed bus effects
bus behavior. The reduction of the delay is very importan
the public.

The traffic flow systems have been studied using vari
models. The car-following models have some advantages
modeling and analysis. In the car-following model, it is ea
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to take into account the local dynamics of cars. The lin
stability analysis can be applied to the basic equation and
jamming transition curve can be calculated by the neu
stability line. On the other hand, the bus route system
been studied only by the cellular automaton model@29#. The
other models are unknown in literature.

In this paper we present the time-headway model
mimic the behavior of buses on the route. We study
time-headway behavior of buses by the use of both sim
tion and linear stability analysis. We show that the bunch
transition occurs in the time-headway model. We investig
the effect of not stopping at the bus stop on the tim
headway profile and the bunching transition.

II. MODELS

We modify the car-following model of traffic to describ
the bus motion in terms of the time headway. First, we c
sider the basic model with stopping at the bus stop. Each
stops at all the bus stops. It is assumed that the bus be
cannot pass over the bus ahead. We now define the b
model for the bus route. The model is defined on a o
dimensional~1D! lattice with periodic boundary conditions
Each lattice site is labeled with a numberm running from 1
to M. A site represents a bus stop. Buses move on the
lattice. Each bus is labeled with a numberj running from 1 to
N. The distance between bus stopsm21 and m is set by
Lm21 . The model is illustrated schematically in Fig. 1. Th
mean velocity of busj between bus stopsm21 and m is
defined byv j (m21). The arrival timet j (m) of bus j at bus
stopm is given by

t j~m!5t j~m21!1
Lm21

v j~m21!
. ~1!

FIG. 1. Schematic illustration of the bus route model.
©2001 The American Physical Society15-1
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We define the time headway of busj at bus stopm as fol-
lows:

Dt j~m!5t j~m!2t j 11~m!, ~2!

wheret j 11(m) is the arrival time of busj 11 in front of bus
j at bus stopm. From Eqs.~1! and~2!, one obtains the equa
tion of motion for busj in terms of time headway

Dt j~m!5Dt j~m21!1Lm21F 1

v j~m21!
2

1

v j 11~m21!G .
~3!

Generally, a bus driver operates his bus in such a manner
his velocity increases or decreases according as the
headway is large or small. We assume that the mean velo
of bus j at bus stopm depends only on the time headway
bus j at bus stopm. The mean velocity is given by the fol
lowing operation velocity function

v j~m!5V„Dt j~m!…, ~4!

where V„Dt j (m)… is the function of only time headwa
Dt j (m). The operation velocity is similar to the optimal ve
locity function in the car-following model for traffic flow
@27#.

Let us include the characteristic of the bus route in
operation velocity function~4!. We adopt the following op-
eration velocity:

V„Dt j~m!…5vmin1
~vmax2vmin!

4

3@ tanh~Dt j~m!2tc!1tanh~ tc!#

3@11exp~2lDt j~m!#, ~5!

wherel is the rate of arrival of passengers,vmin is the mini-
mal velocity,vmax is the maximal velocity in the limit ofl
50, and tc is the desired time headway. Whenl50, the
operation velocity function~5! is consistent with the optima
velocity function of the traffic model except forvminÞ0 and
the replacement of the distance headway with the time he
way. The operation velocity function~5! has the following
properties:~1! in the limit of l50, the velocity increases
monotonically with the time headway and~2! the velocity
decreases with increasing time headway for smalll and
large time headway. The property~1! reflects the fact tha
when the bus behind catches up with the delayed bu
should slow down in order to avoid a collision. The prope
~2! reflects the fact that the bus is delayed more and m
with increasing the gap size~time headway! in front of that
bus because the delayed bus should pick up more passen
Figure 2 shows the plot of Eq.~5! against time headway fo
l50.2,vmin52.0,vmax54.0, andtc52.0. Thus the bus route
problem is reduced to its simplest form. The essential f
tures are maintained.

We take into account no stopping of the delayed bus.
bus is very delayed, the bus should pass over the bus
without stopping at the bus stop. It is assumed that a
trend to pass over the bus stop when the time headway o
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bus is larger than the critical valuets . If the bus passes ove
the bus stop without stopping, the passengers waiting at
bus stop take the next bus. Then, we adopt the modi
operation velocity function:

V„Dt j~m!…5vmin1
~vmax2vmin!

4

3@ tanh„Dt j~m!2tc…1tanh~ tc!#

3$11exp@2A„Dt j~m!,Dt j 11~m!…#%, ~6!

with

A„Dt j~m!,Dt j 11~m!…

5l@Dt j~m!2Dt j~m!$11tanhb„Dt j~m!2ts…%/2

1Dt j 11~m!$11tanhb„Dt j 11~m!2ts…%/2#. ~7!

When Dt j (m),ts and b→`, the second term of Eq.~7!
becomes zero. IfDt j (m).ts and b→`, the second term
becomes one. The first term represents the number of
sengers at the bus stopm with stopping, the second term
represents the number of passengers taking the next bj
21 when busj passes over the bus stopm, and the third term
represents the number of passengers taking the next bj
when busj 11 passes the bus stopm.

Furthermore, we take into account the speed up of a n
stopping bus. The speed up of the nonstopping bus is
cluded in the operation velocity function as follows:

V„Dt j~m!…5vmin1
~vmax2vmin!

4

3@ tanh„Dt j~m!2tc…1tanh~ tc!#

3$11exp@2A„Dt j~m!,Dt j 11~m!…#%

1c@11tanh$b„Dt j~m!2ts…%#. ~8!

The third term of Eq.~8! represents the speed up when t
delayed bus passes over the bus stopm without stopping. If
the time headwayDt j (m) of a delayed bus is larger thants ,
the bus passes over the bus stopm without stopping and
simultaneously increases speed byc. In the following, we
consider the three versions of the time-headway model:~A!
the basic model described by Eqs.~3!, ~4!, and ~5!, ~B! the

FIG. 2. Plot of the operation velocityV(Dt) against time head-
way Dt for l50.2, vmin52.0, vmax54.0, andtc52.0.
5-2
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BUNCHING TRANSITION IN A TIME-HEADWAY MODEL . . . PHYSICAL REVIEW E 63 036115
nonstopping model described by Eqs.~3!, ~4!, ~6!, and ~7!,
and ~C! the nonstopping and speed up model described
Eqs.~3!, ~4!, ~7!, and~8!.

III. SIMULATION AND RESULT

We carry out a computer simulation for the three versio
of the bus route model. We solve Eqs.~3! and ~4! by itera-
tion under the periodic boundary condition. We assume
the distance between bus stops is the same for all bus s
Lm5a. The simulation is carried out for the following initia
condition:

Dt j~0!5Dt010.013$R~1!20.5%, ~9!

whereR(1) is the random number ranging from 0 to 1 a
Dt0 is the initial value of the time headway which is th
same for all buses. The second term represents a small
tuation of time headway at an initial stage. We study
dependence of bus velocity on the initial time headway.
plot in Fig. 3 the average velocityv(Dt0) at a steady state a
a function of the initial time headwayDt0 wherea512.0,
tc52.0, l50.2, vmin52.0, vmax54.0, andN5100 ~N is the
total number of buses!. The average velocity at bus stopm is
defined as v(Dt0)5(1/N)( j 51

N V„Dt j (m)… where Dt0

5(1/N)( j 51
N Dt j (m). We find the three discontinuous poin

labeled bya, b, and c in Fig. 3. The average velocity at
steady state increases with the time headway toDt051.08.
At point c, the average velocity increases discontinuously
a small quantity. There is a small gap at pointc in the ve-
locity curve. Then, the average velocity increases to po
b(Dt052.19). At pointb, there is a small gap in the velocit
curve. Furthermore, the average velocity increases with t
headway to pointa. At point a of Dt053.71, the velocity
decreases abruptly tov52.98. In time headway larger tha
Dt053.71, the steady-state velocity remains nearly cons
(v52.98). We find that there are four distinct states for
four regions: ~a! the bunching phase forDt0.Dta
(53.71), ~b! the homogeneous free phase forDta>Dt0
.Dtb(52.19), ~c! the kink jam phase forDtb>Dt0.Dtc
(51.08), and ~d! the homogeneous congested phase

FIG. 3. Plot of the average velocityv(Dt0) as a function of the
initial time headwayDt0 for the basic version A of the time
headway model wherea512.0, tc52.0, l50.2, vmin52.0, and
vmax54.0. The labelsa, b, andc indicate the transition points.
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Dtc>Dt0 . In Fig. 4 we show the time-headway profilesDt j
plotted against bus numberj for various values of initial time
headwayDt0 for a512.0 where the total number of buses
N5100 andt is defined ast5m1 integer3M . The profile
~a! is obtained forDt054.0 andt5140. The profile~a! rep-
resents the typical pattern of the bunching phase. The t
headways of some buses increases accordingly as the b
proceed. The buses behind a bus with large time head
have a small time headway. The profile~b! is obtained for
Dt053.0 andt52000. The profile~b! represents the typica
pattern of the homogeneous free phase. All the buses h

FIG. 4. The time-headway profilesDt j plotted against bus num
ber j for the three distinct phases in version A wherea512.0, tc

52.0, l50.2, vmin52.0, vmax54.0, andN5100. ~a! The typical
profile of an inhomogeneous bunching phase forDt054.0 andt
5140. ~b! The typical profile of a homogeneous free phase
Dt053.0 andt52000.~c! The typical profile of a coexisting phas
for Dt052.0 andt52000.
5-3
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TAKASHI NAGATANI PHYSICAL REVIEW E 63 036115
the same time headway as the initial value. The profile~c! is
obtained forDt052.0 andt52000. The profile~c! represents
the typical pattern of the kink jam phase. The time headw
oscillates from bus to bus. The profile is similar to the coe
isting phase in the traffic flow. Figure 5 shows the time ev
lution of time headway for the bunching phase with the sa
values of parameters as Fig. 4~a!. The fluctuation at an initial
stage grows accordingly as buses proceed. The delayed b
catch up with the bus behind. In time, the time headways
some buses increases with time.

We study version B of the time-headway model. We u
the operation velocity function~6! with ~7!. The buses pas
over bus stops when the time headway becomes larger
ts510.0. In Fig. 6 we show the space–time plot of tim
headway fromt5100 to t5300 for a512.0,Dt054.0, and
ts510.0 whereN5100. Figure 7 shows the time-headwa
profile plotted against busj obtained att5300 for the same
values of parameters as in Fig. 6. The time headway of m
delayed buses becomes less than the critical valuets510.0
but the time headway of some buses becomes larger tha
critical value ts510.0. In the delayed bus with less tim
headway thants510.0, the time headway decreases acco
ingly as the bus proceeds. However, in the delayed bus
larger time headway thants510.0, the time headway in

FIG. 5. Time evolution of the time-headway profile for the i
homogeneous bunching phase with the same values of param
as in Fig. 4~a!.

FIG. 6. Space–time plot of time headway fromt5100 to t
5300 for version B wherea512.0, Dt054.0, andts510.0, and
N5100.
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creases accordingly as the bus proceeds. We compare F
with Fig. 4~a!. The nonstopping improves the delay of mo
delayed buses. However, some delayed buses become
more and more delayed. The bus driver should speed u
addition to the nonstopping to further reduce the delay.

In Fig. 8 we plot the average velocityv(Dt0) against the
initial headwayDt0 where a512.0, tc52.0, ts510.0, and
N5100. We compare Fig. 8 with Fig. 3. The bunching tra
sitions occur at the same values as in Fig. 3. In the bunch
phase, the bus velocity is larger than that in Fig. 3. T
increase of bus velocity is due to the nonstopping effect. T
transition points do not change by introducing the nonst
ping effect. In the homogeneous free phase, the coexis
phase, and the homogeneous congested phase, the
headway profiles do not change and are the same as tho
version A.

We study version C of the time-headway model. We u
the operation velocity function~8! with ~7!. The buses pass
over bus stops when the time headway becomes larger
ts510.0 and simultaneously speeds up. In Fig. 9, we sh
the space–time plot of time headway fromt550 to t5225
for a512.0, Dt054.0, andts510.0 wherec51.0 andN
5100. The values of the parameters are the same as tho
version B in Fig. 6. Figure 10 shows the time-headway p

ters FIG. 7. Time-headway profile plotted against busj obtained at
t5300 for the same values of parameters as in Fig. 6.

FIG. 8. Plot of average velocityv(Dt0) against the initial head-
way Dt0 for version B wherea512.0, tc52.0, ts510.0, andN
5100.
5-4
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file plotted against busj obtained att52500 for the same
values of parameters as in Fig. 9. Aftert5200, the time-
headway profile does not change and the flow of buses
a steady state. The delayed buses move with a constant
headway,Dt59.2 and its time headway is a little less tha
the critical valuets510.0. The normal buses behind the d
layed buses move with a constant time headway,Dt52.6.
The time headway of all the buses is less thants510.0. We
compare Fig. 10 with Fig. 4~a!. The nonstopping and spee
up improves the delay of all delayed buses.

In Fig. 11 we plot the average velocityv(Dt0) against the
initial headway Dt0 where a512.0, tc52.0, ts510.0, c
51.0, andN5100. We compare Fig. 11 with Figs. 3 and
The bunching transitions occur at the same values as in F
3 and 8. In the bunching phase, the bus velocity is larger t
those in Figs. 3 and 8. The increase of the bus velocity is
to both nonstopping and speed-up effects. The transi
points do not change by introducing both nonstopping a
speed-up effects. In the homogeneous free phase, the c
isting phase, and the homogeneous congested phase
time-headway profiles do not change and are the sam
those of versions A and B. Thus we find that the buses
operated correctly by both nonstopping and speed up of
delayed buses. There are no delayed buses with larger
headway thants510.0.

FIG. 9. Space–time plot of time headway fromt550 to t
5225 for version C wherea512.0, Dt054.0, ts510.0, c51.0,
andN5100.

FIG. 10. Time-headway profile of version C plotted against b
j obtained att52500 for the same values of parameters as in Fig
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IV. LINEAR STABILITY ANALYSIS

We consider the stability of a homogeneous flow of bus
The homogeneous flow is defined by such a state tha
buses move with the same time headwayDt0 and the same
operation velocityV(Dt0). We apply the linear stability
analysis to our model~3! with the operation velocity~4!. Let
yj (m) be small deviations from the homogeneous flo
Dt j (m)5Dt01yj (m). Then, the linear equation is obtaine
from Eqs.~3! and ~4!

yj~m!5yj~m21!1
aV8~Dt0!

V~Dt0!2 $yj 11~m21!2yj~m21!%,

~10!

where a5Lm and V8(Dt0) is the derivative of operation
velocity V(x) at x5Dt0 :

V8~Dt0!5
dV~x!

dx U
x5Dt0

.

By expandingyj (m)5Y exp(ikj1zm), one obtains

ez511
aV8~Dt0!

V~Dt0!2 ~eik21!. ~11!

By solving Eq.~11! with z, one finds that the leading term o
z is an order ofik. Whenik→0, z→0. Let us derive the long
wave expansion ofz, which is determined order by orde
around ik'0. By expandingz5z1ik1z2( ik)21¯ , the
first-order and second-order terms ofik are obtained,

z15
aV8~Dt0!

V~Dt0!2 , ~12!

z25
aV8~Dt0!

2V~Dt0!2 H 12
aV8~Dt0!

V~Dt0!2 J . ~13!

If z2 is a negative value, the homogeneous flow becom
unstable for long wavelength modes. Whenz2 is a positive

s
.

FIG. 11. Plot of the average velocityv(Dt0) against the initial
headwayDt0 for version C wherea512.0, tc52.0, ts510.0, c
51.0, andN5100.
5-5
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TAKASHI NAGATANI PHYSICAL REVIEW E 63 036115
value, the homogeneous flow is stable. One finds the un
bility condition for small disturbances of long wavelength

V8~Dt0!,0, ~14!

or

a.
V~Dt0!2

V8~Dt0!
for V~Dt0!.0. ~15!

The unstability condition~15! is similar to that of the con-
ventional car-following model for traffic@27#. The neutral
stability line a5V(Dt0)2/V8(Dt0) for V(Dt0).0 presents
the jamming transition curve among the homogeneous
phase~HF!, the coexisting phase~COE!, and the homoge-
neous congested phase~HCT!. The unstability condition~14!
is a new one and occurs due to the delay effect of a bus
a large gap. The neutral stability conditionV8(Dt0)50 pre-
sents the transition line between the inhomogeneous bu
ing phase~IB! and the HF. Figure 12 shows the phase d
gram in the space (Dt0,1/a) for l50.2, vmin52.0, vmax
54.0, and tc52.0. The solid curve is given bya
5V(Dt0)2/V8(Dt0) for V(Dt0).0. The vertical line is

FIG. 12. Phase diagram in the space (Dt0,1/a) for l50.2,
vmin52.0, vmax54.0, andtc52.0. The solid lines divide the spac
into four distinct phases:~1! the inhomogeneous bunching pha
~IB!, ~2! the homogeneous free phase~HF!, ~3! the coexisting phase
~COE!, and~4! the homogeneous congested phase~HCT!. The open
circles indicate the transition points obtained by the simulation.
e

g

ug
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given by V8(Dt0)50. The simulation result is indicated b
open circles. The simulation result agrees with the neu
stability lines obtained from the linear stability analysis. T
operation velocity has the maximal point forl,1.61. The
bunching transition does not occur forl.1.61 since the op-
eration velocity function increases monotonically forl
.1.61. In Fig. 13, we show the plot of the bunching tran
tion line V8(Dt0)50 againstl for tc52.0. The inhomoge-
neous bunching phase appears above the solid line. The
circles indicate the simulation result. The theoretical cu
obtained by the linear stability analysis is consistent with
simulation result.

V. SUMMARY

We have presented the time-headway model for a
route. We have investigated bus behavior and the bunch
transition. We have shown that the dynamical phase tra
tions occurs with varying the initial time headway. We ha
also applied the linear stability analysis to our model. W
have derived the neutral stability curves which give the d
namical phase transition lines. We have found that the n
tral stability curves agree with the simulation result.

It will be useful to investigate bus behavior in the rou
with the use of the time headway model proposed here.

FIG. 13. Plot of the bunching transition lineV8(Dt0)50 against
l for tc52.0. The inhomogeneous bunching phase appears a
the solid line. The open circles indicate the simulation result.
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